Understanding neural networks using regression trees: an application to multiple myeloma survival data by D. Faraggi, M. LeBlanc and J. Crowley, Statistics in Medicine 2001; 20:2965-2976.
نویسنده
چکیده
Neural networks are becoming very popular tools for analysing data. It is however quite difficult to understand the neural network output in terms of the original covariates or input variables. In this paper we provide, using readily available software, an easy way of understanding the output of the neural network using regression trees. We focus on the problem in the context of censored survival data for patients with multiple myeloma, where identifying groups of patients with different prognosis is an important aspect of clinical studies. The use of regression trees to help understand neural networks can be easily applied to uncensored situations.
منابع مشابه
Statistics in Clinical Cancer Research CureModels asaUseful Statistical Tool forAnalyzingSurvival
Cure models are a popular topic within statistical literature but are not as widely known in the clinical literature. Many patients with cancer can be long-term survivors of their disease, and cure models can be a useful tool to analyze and describe cancer survival data. The goal of this article is to review what a cure model is, explain when cure models can be used, and use cure models to desc...
متن کاملUsing Neural Networks with Limited Data to Estimate Manufacturing Cost
Neural networks were used to estimate the cost of jet engine components, specifically shafts and cases. The neural network process was compared with results produced by the current conventional cost estimation software and linear regression methods. Due to the complex nature of the parts and the limited amount of information available, data expansion techniques such as doubling-data and data-cr...
متن کاملComparison of Artificial Neural Networks and Cox Regression Models in Prediction of Kidney Transplant Survival
Cox regression model serves as a statistical method for analyzing the survival data, which requires some options such as hazard proportionality. In recent decades, artificial neural network model has been increasingly applied to predict survival data. This research was conducted to compare Cox regression and artificial neural network models in prediction of kidney transplant survival. The prese...
متن کاملMultivariate exponential survival trees and their application to tooth prognosis
This paper is concerned with developing rules for assignment of tooth prognosis based on actual tooth loss in the VA Dental Longitudinal Study. It is also of interest to rank the relative importance of various clinical factors for tooth loss. A multivariate survival tree procedure is proposed. The procedure is built on a parametric exponential frailty model, which leads to greater computational...
متن کاملComparison of Artificial Neural Networks and Cox Regression Models in Prediction of Kidney Transplant Survival
Cox regression model serves as a statistical method for analyzing the survival data, which requires some options such as hazard proportionality. In recent decades, artificial neural network model has been increasingly applied to predict survival data. This research was conducted to compare Cox regression and artificial neural network models in prediction of kidney transplant survival. The prese...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Statistics in medicine
دوره 20 19 شماره
صفحات -
تاریخ انتشار 2001